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Abstract A class of integral recursion models for the growth and spread of a syn-
chronized single-species population is studied. It is well known that if there is no
overcompensation in the fecundity function, the recursion has an asymptotic sprea-
ding speed c*, and that this speed can be characterized as the speed of the slowest
non-constant traveling wave solution. A class of integral recursions with overcompen-
sation which still have asymptotic spreading speeds can be found by using the ideas
introduced by Thieme (J Reine Angew Math 306:94-121, 1979) for the study of space-
time integral equation models for epidemics. The present work gives a large subclass
of these models with overcompensation for which the spreading speed can still be
characterized as the slowest speed of a non-constant traveling wave. To illustrate our
results, we numerically simulate a series of traveling waves. The simulations indicate
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324 B. Lietal.

that, depending on the properties of the fecundity function, the tails of the waves may
approach the carrying capacity monotonically, may approach the carrying capacity in
an oscillatory manner, or may oscillate continually about the carrying capacity, with
its values bounded above and below by computable positive numbers.

Keywords Traveling waves - Nonmonotone growth function - Spreading speed -
Integral recursion

Mathematics Subject Classification (2000) 92D40 - 92D25

1 Introduction

The growth and spread of a synchronized single-species population is often modeled
by an integral recursion of the form

+0oo

1 (¥) = Qlitn](x) i= / KGx = ) f n()dy. (1.1

—00

Here u, (x) is the density of individuals at point x and time n, f(u) describes the
density-dependent fecundity, and k(x — y) is the dispersal function, which depends
upon the signed distance x — y between the location of birth y and the location of
settlement x. The recursion (1.1) describes the reproduction and dispersal of a time-
synchronized species in which all individuals first undergo reproduction and then
redistribute their offspring before reproduction occurs once again. This is a good
model for annual plants and many insect species.

It is well-known (see, e.g. [8,9]) that if f(u) is nondecreasing, then the integral
recursion (1.1) has a forward asymptotic spreading speed ¢*, and ¢* can be characteri-
zed as the slowest speed of a family of non-constant traveling wave solutions of (1.1).
Moreover, it is shown that if fecundity has the additional property that f (1) < f/'(O)u,
then ¢* can be found from a simple formula which depends only on f’(0) and the migra-
tion kernel k(x). Thieme [5] pointed out that the latter result can be formally obtained
from his results on the spreading speed under a continuous-time integro-differential
equation model by requiring the birth-migration kernel k(z, x) of this model to take
the form §(# — 1)k(x) with & the Dirac distribution and k(x) the dispersal function of
Eq. (1.1).

It is known that fecundity functions f(z) may not be nondecreasing. This is, for
instance, true of the Ricker function f(u) = ue”" " with r > 1, and of the logistic
function f(u) = u[l +r(1 —u)] with 0 < r < 3. If f(u) decreases on some range
of u, the phenomenon of overcompensation is said to occur.

In [6] Thieme showed that a spreading result can still be obtained for space-
time integral equations under assumptions about the nonlinearity f which imply that
f(u) < f'(0)ubutpermit f tobe the Ricker orlogistic function, and that the number c*
given by the above-mentioned formula is, in fact, the spreading speed. Proposition 3.1
will give a more precise statement of the analogous result for the recursion (1.1). The
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Traveling waves in overcompensated integral recursions 325

purpose of the present work is to show that under some assumptions which are slightly
stronger than those of [6] but which are satisfied by the Ricker and logistic functions,
the speed ¢* can, as in [8,9], be characterized as the speed of the slowest member of
a family of non-constant traveling wave solutions of (1.1). That is, we shall show that
for every ¢ > c¢* there is a nonnegative solution of the form u, (x) = w(x — nc) of
(1.1) with w(oco) = 0 but w bounded away from zero near —oo, and that there is no
such wave when 0 < ¢ < c*.

The problem will be formulated in Sects. 2 and 3. Our main result will be stated
and proved in Sect. 4. Section 5 shows numerical simulations of the graphs of some
of these waves. Section 6 will discuss some relations of our results to other work. In
particular, it will be shown that our theorem on the one-space-dimensional recursion
(1.1) can immediately be applied to finding the traveling waves of a large class of
integral recursion and integral equation models in any number of dimensions.

2 Hypotheses and definitions

We shall make the following assumptions, the first two of which are satisfied by the
Ricker function f(#) = ue” ™" when r > 0.

Hypotheses 2.1 i. There is a positive constant o such that
a. f(u) is continuous for 0 < u < ay;
b. 0 < f(u) <agfor0<u <ap;and
c. f(0O)=0.

ii. There is a positive constant d < g such that
a. f(u) is nondecreasing for0 < u < d,
b. the specific net growth rate f(u)/u is bounded and nonincreasing for

0<uc<d,;

c. fu)/u>1jfor0<u <d;and
d. fw/u < f(d)/dford <u < «ap.

iii. k(x) is a continuous and nonnegative function such that
a [Tk()dx = 1;
b. the integral

o]

K(u) = /k(x)e’”dx 2.1

—0oQ
is finite for at least one positive and one negative value of L.

Remark Hypotheses 2.1.ii.b, ¢, and d imply that the function f is right differentiable
at 0, that f/(0) > 1, and that f(u) < f'(O)u for 0 < u < ayg.

Define the function

[ = [max f(v) 2.2)
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for 0 < u < ag (This function is denoted by G (u, 0) in [6]). fT (u) is a continuous
and nondecreasing function, and 0 < f(u) < f(u) < ag for 0 < u < agp. Note that
Hypothesis 2.1.ii.a shows that f*(u) = f(u) foru < d.

Since Hypothesis 2.1.ii.c shows that f*(u) > u for 0 < u < d, and since
f1(ap) < ag by Hypothesis 2.1.i.b, there must be at least one root of the equili-
brium equation f+(u) = u on the interval [d, ap], and there are no such roots in
the interval (0, d). We define o to be the smallest positive solution of the equilibrium
equation fT(u) = u. Then

ff@) =« and fTw)>u for0<u <a. 2.3)
We now define the function

f () = r<n11<1 f) for0<u<oa. 2.4

(This function is called G(u, ) in [6]). Clearly, f~ () < f(u). In fact, f~ is the
largest nondecreasing function which lies below f on the interval [0, «]. Because f
is nondecreasing on the interval [0, d], we obtain the formula

[T () =min{f(u), f~(d)} when0<u<d. 2.5)
This and Hypothesis 2.1.ii.c show that f~(u) = f(u) > u for all sufficiently small
positive u. Since f~ (&) < fT(a) = «a, there is a smallest positive solution o of the
equation f~ (#) = u. This constant has the properties

O<o<u*<a, f(0)=o, and f (u)>u for0<u<o, (2.6)

where u* is defined to be the smallest positive root of the equation f(u) = u. u* is
called the carrying capacity of the system defined by the recursion (1.1).

3 The spreading speed

An approach parallel to the one in [6] can be used to obtain a spreading speed ¢* for
the recursion (1.1) .

Proposition 3.1 Suppose that the Hypotheses 2.1 are satisfied. Define the numbers

¢t = infO (l/u)lnl/e’“’k(y)dy (3.1)
>
and
¢*(=1) = inf | (1/p)In /e—m‘k(y)dy . (3.2)
nw=>
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Then c* is the asymptotic rightward spreading speed of the recursion (1.1) in following
sense:

If the continuous initial function ug(x) is zero for all sufficiently large x, ug % 0,
and 0 < up(x) < a, then for any positive € the solution of u,, of the integral recursion
(1.1) has the following properties

1. uy(x) < aforall x andn.
ii. lim sup  u,(x) | =0. 3.3)
n—0o0 x>n(c*+e€)

iii. ¢*4+c*(—=1) >0, and

n—00 | —n(c*(—1)—e) <x <n(c*—e)

lim inf[ inf u,,(x)} > g (3.4)

The proof of this Proposition is based on the well-known result:

Proposition 3.2 Comparison Principle. Let R[u] be an operator which takes the set
of nonnegative bounded continuous functions u(x) into functions in the same set, and
which is monotone in the sense that u > v implies that R[u] > R[v]. If {v,} and
{wy} are two sequences with the properties v,+1 < R[v,] and w,11 > R[w,] for all
nonnegative n, and if vo(x) < wo(x), then v, < wy for all positive n.

This property is proved by induction.
The proof of Proposition 3.1 makes use of the two auxiliary operators

+0o0

0Flul(x) = / kG — ) f )y (35)

—0Q
and

+00

0 [ul(x) == / kG — ) £~ u())dy. (3.6)

—00

We also define Q[u] to be the integral operator on the right of (1.1). By construction,
0< f~(u) < f(u) < fT(u) <afor0 <u < a,and hence

07 [ul(x) < Qlul(x) < QF[ul(x) (3.7

for all nonnegative continuous functions u# with # < «. The Comparison Principle
shows that if u;" is a solution of the recursion

+ o+
u, 1= O [u, 1,
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{u,, } is a solution of the recursion
u, =0 [u,l

and {u,} is a solution of the recursion (1.1), and if 0 < u (x) < up(x) < ut(x) <a,
then

0 <u, (x) <up(x) <uf(x) <a

for all x and n. Because f+ and f~ are nondecreasing and have the same derivative
at zero, the results of [8] show that the recursions for u™ and u~ have the spreading
speed (3.1). In particular, the statement (3.3) is valid with u replaced by u™, and the
statement (3.4) is valid with u replaced by u~. In order to finish the proof, we only
need to show that ¢* + ¢*(—1) > 0. For this purpose, we use Schwarz’s inequality to
see that the logarithms in the definitions (3.1) and (3.2) of ¢* and ¢*(—1) are strictly
convex in u (For an equivalent derivation, see the definitions (9.4) and (9.6) and the
equation (9.7) of [9] with & = 1).

Convexity shows that the logarithm on the right of (3.2) is bounded below by its
linearization at 0, and this implies that ¢*(—1) is bounded below by the derivative at
u = 0 of this logarithm. A simple calculation shows that this derivative is the negative
of the derivative of the logarithm in (3.1) at © = 0. Therefore, we can obtain a lower
bound for ¢* 4 c*(—1) by replacing the logarithm on the right of (3.1) by this logarithm
minus u times its derivative at zero. Thus, a lower bound for ¢* + ¢*(—1) is obtained
by finding the infimum of 1/ times a strictly convex function which is positive and
has the derivative O at 0. It is easily seen that this infimum is bounded below by the
(positive) slope of any tangent line to the graph which lies above the p-axis at © = 0.
This shows that ¢* + ¢*(—1) > 0. We have thus established all the statements of
Proposition 3.1.

Remark 1. The same proof shows that ¢*(—1) is the leftward asymptotic spreading
speed of (1.1).

Remark 2. The statement (3.3) shows that for any positive €, all points of any level
set {x : u,(x)} = np with n < o must lie in the interval x < n(c* + €) when
n is sufficiently large. The statement (3.4) shows that for all sufficiently large n
the interval x > n(c* — €) contains points of the above level set with n < o, but
permits level sets with n > o to spread more slowly or not at all.

4 The existence of traveling waves
A solution of the recursion (1.1) is said to be a traveling wave of speed c if it has the
form u,(x) = w(x — nc), where w is a function of one variable. By substituting this

form into the recursion, we see that w is a traveling wave if and only if it satisfies the
equation

w(x) = QOc[w](x),
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where we have defined the operator

e ¢]

Oc[w](x) := Olw](x +¢) = / SwO)k(x +c—y)dy. 4.1

—00

Thus, a traveling wave is a fixed point of the operator Q.. In a similar manner, we
can define traveling waves of the recursions (3.5) and (3.6) as fixed points of the
operators Q7 [u](x) := QF[ul(x +¢) and QO [ul(x) := O~ [u](x + c), respectively.
Because the operators Q7 are order-preserving, the results of [8,9], show that for all
¢ > ¢*, the integral recursions (3.5) and (3.6) have nontrivial nonincreasing traveling
wave solutions wT(x — nc) and w™(x — nc), respectively, with wE(+00) = 0,
wt(—00) = &, and w™(—00) = o. In this section we shall show that the recursion
(1.1) also has non-constant traveling wave solutions of every speed ¢ > c¢*.

Our main result is the following theorem, which shows that ¢* can be characterized
as the slowest speed of a class of traveling wave solutions for the recursion (1.1).

Theorem 4.1 For any ¢ > c*, the integral recursion (1.1) has a traveling wave solu-
tion u,(x) = wx — nc) with wkx) < o« for all x, w(+oo) = 0O,
and liminfy_, _o w(x) > o. A traveling wave solution w(x — nc) with w(oco) = 0
and liminf,_, o w(x) > 0 does not exist if c < c*.

We shall use three lemmas in the proof of the Theorem.

Lemma 4.1 The number
C:=sup{u:0<u<dand f(u) < f~(d)} “4.2)
satisfies the inequalities 0 < £ < d, and
fw=ftw=fu for0O<u<=t.

Proof Because f is continuous and strictly positive for u > 0, f~(d) > 0. Since
f(©0) =0, f(u) < f~(d) for all sufficiently small u, so that £ > 0. Because f(d) >
f~(d), £ < d. The formula (2.5) shows that f~(u) = f(u) for u < £. The definition
(2.2) shows that fT(u) = f(u) for u < d, and hence for u < £. This finishes the
proof of the Lemma.

Lemmad4.2 [f0 <y < £/a where £ < d is defined by (4.2), and if 0 < u < «, then
[ yuw) = yftw).

Proof Since yu < d, Hypothesis 2.1.ii.a shows that

f) < f(yu) for0<wv <yu.

On the other hand, Hypothesis 2.1.ii.b shows that

J) =vf(yw)/(yu) foryu <v=d,
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and Hypothesis 2.1.ii.d then yields the same inequality for d < v < «. The definition
(2.2) of f* and Lemma 4.1 show that

ffw < fow/y =~ yuw/y.

This is the statement of the Lemma.
We shall use the usual Banach space C(—o00, 00) of bounded continuous functions
with the maximum norm [|u|| = SUP,¢(_ oo, 4oo) |4 (X)|. Forany ¢ > c*, let

Ec.={u(x) :uin C(—00,00), ywh(c;x) <ux) <w'(c;x)}

with 0 < ¥y < min{o, £}/a.
Clearly E. is a bounded nonempty closed convex subset of C(—o0, 00).

Lemma 4.3 The operator

oo

Qclul(x) == Qlul(x +¢) = / k(x +c—y) fu(y)dy
maps E. into E..
Proof Define the operators
OFlul = / k(x +c = ) fFw)dy,

so that O [w™] = wt. Because f* > f and f7 is nondecreasing, we see that if
u < wT, then

Oclul < QF[ul < O [w'] =wt.
On the other hand, Lemma 4.2 shows that if u > yw+, then
Qclul = O [ul = O  [yw*] = y Qf [w™] = yw™

Thus if u is in E., the same is true of Q.[u]. This is the statement of the Lemma.
We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. To show the first statement of the Theorem, we define the
operators

\
|
3

Qclu](x), if x >

max{Qc[ul(=m), yw*(c; 0)}, if x

IA
|
3

0 [u)(x) = {
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for every positive integer m and all u in E.. In view of Lemma 4.3, Q£m> takes E.
into E..

By multiplying the continuous function k(x) by a suitable cutoff function, one can,
for any positive €, find a continuous function k. (x) which vanishes outside a bounded
interval [— M., M,] and satisfies the inequality

o0
/ lke — kldx < €/3.
—0o0

Because k. is uniformly continuous, |kc(x + 1) — kc(x)| < €/{6[1 + Mc]} for all
sufficiently small . Since € is arbitrary, it follows that

lim / lk(x + 1) — k(x)|dx = 0. 4.3)
r]—)

—00

This implies that the family Q.[u] with 0 < u < « is equicontinuous. On the other
hand, w is uniformly continuous, and hence the family ng)[u] is also equiconti-
nuous. Then Ascoli’s theorem implies that every sequence v, (x) in E,. has a subse-
quence vy, (x) such that QE" ) [vy, 1(x) converges to a function s (x) uniformly on every
bounded interval. We wish to show that ng) [vn, 1(x) converges to s(x) uniformly on
the whole real line (—oo, +00). For this purpose we observe that for any given € > 0,
there exist M > —m such that wt(c; M) < €, and N > 0 such that for « > N,
SUP_,y<x<m|Qelvn, 1(x) — s(x)| < €. Because both Q.[v,, ] and s are nonnegative
and bounded above by the nonincreasing function w* (c; x), we see that

sup |Q£m)[vnk](x) —s)| <wh(; M) <e whenk > N.
x>M

Some simple arithmetic shows that when x < —m and « > N,

100 104, 1) = s = | max(Qclvn, 1(=m), yw* (c; x))
—max{s(—m), yw™ (c; x)}|

= |Qc[vn,(](_m) —s(—m)| < e.

Since |Q§m)[vnk](x) —s5(x)| < efor—m < x < M when k > N, we have shown that
2’”) [vy, ] converges to s(x) uniformly on the whole real line. That is, ng) takes the

convex set E, into a compact subset of E.. The Schauder Fixed Point Theorem (see,
e. g., [2], pp. 403-406) shows that there exists w™ (x) € E, such that ng)[w(’”)] =
w™  Because the family w™ is again equicontinuous, there is a sequence m; — 0o
as i — oo such that QE.’" i )[w(’”i )](x) converges to a function w(x) € E. uniformly
for x on every bounded interval. It follows that w™i) (x) converges to w(x) uniformly
for x on every bounded interval. This, Hypothesis 2.1.iii.a, and the definition of Qém)

show that ngi)[w(”’i)](x) — Q¢[w](x) for all x as i — oo. We therefore have
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332 B. Lietal.

O [w](x) = w(x) for all x. It follows that Q[w(- — nc)](x) = w(x — (n + 1)c), so
that w is a traveling wave solution of (1.1).

We have shown that for any ¢ > ¢* the recursion (1.1) has a traveling wave solution
w(x —ne) with ywt(e; x) < w(x) < wT(c; x) for all x. Since w(c; x) < « for all
x and wt(c; 00) = 0, we have w(c; x) < « for all x, and w(oo) = 0.

To obtain the behavior of w at —oo, we consider the recursion

Uy = Q¢ luy, ]
with the initial condition
uy =yw'.

Lemma 4.2 shows that Q[u,] > ug, and it follows by induction that ;" is non-
decreasing in n and nonincreasing in x. Moreover, since Q_ [w] < Q.[w] = w and
uy =< w, induction shows that u,, < w for all n. In particular,

liminf w(c; x) > u, (—oo0) foralln.
X—>—00

For any fixed n, u,; (x — z) converges to the constant u#, (—o0) uniformly on bounded
intervals as z — —oo. Therefore,

Upyy(=00) = [ (u, (=00)).

Since 0 < up(—o0) = ya < o, and the u, (—oo) are nondecreasing, they must
converge to the nearest solution of the equation, # = f~ (). By definition, this
solution is o. Thus we have shown that lim inf,_, o w(c; x) > o.

It only remains to prove that if there is a solution w(c; x) of the traveling wave
equation w = Q. [w] with w(c, 00) = 0 and liminf,_, o w(c; x) > 0, then ¢ > c*.
Suppose there is such a solution, and choose a nonincreasing function v, (x) such that
vy (x) < w(c;x), 0 < vy (—00) < o, and v, (x) = 0 for x > 0. Define v, by the
recursion v, ; = Q~ [v, ]. Induction shows that v, (x) < w(c; x — nc), so that for

oon+l T
any positive €

lim { sup vn_(x)} < lim w(c; ne) = 0.
n—oo

n—00 x>(c+e€)n

The definition of the spreading speed ¢* of the recursion for v~ and the fact that € is
arbitrarily small show that ¢* < ¢, and the proof of Theorem 4.1 is complete.

5 Numerical simulations

In this section we present some approximations to traveling waves of the recursion
(1.1) with the Laplace kernel

k(|x — y|) = 100200k~
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and the Ricker recruitment function
fu) =ue™ ™.
This function is increasing for 0 < u < 1, and decreasing for u > 1. It is easily

checked that the Hypotheses 2.1 are satisfied if and only if » > 0, and that the positive
solution of the equilibrium equation u = f(u) is

u*=r.
Moreover,
N f(u) foru<1
ST =
¢! foru>1,
so that
r forO<r <1
o =
e ! forr > 1,
while
£~ @) = min{f (), &1,
so that
r forO<r <1
0= r—1
e2r—l-e forr > 1.

The following figures show approximations to the graphs of w(x)/r where
w(x — nc) is a traveling wave of speed ¢ of (1.1), for several choices of r and c.
These graphs were obtained by an iterative process to find a fixed point of the operator
Q.[u] defined in (4.1). The process uses the fact that a traveling wave of speed ¢ > ¢*
of (1.1) behaves like multiple of ¢#* at infinity, where u is the smaller root of the
equation (1/u) In[f"(0)K (n)] = (1/w)In[e” /{1 — (11/200)?}] = c. A sufficiently
small positive number p was chosen, and ¢ was determined from this formula. The
initial function u was taken to be of the form ug = 0.5¢~**=_ For each n, Up+1
was obtained from u,, by setting it equal to a numerical approximation of Q[u,] for
x < 15—cand equatingitto .05e*®~> for x > 15—c¢. The numerical approximation
to Q[u,] was based on the FFT algorithm of [1] with 32,769 grid points. Because the
positive equilibrium state is u = r, we have graphed the normalized function u19g/r
for various values of r. These functions can be expected to be good approximations
tow(x)/r.
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334 B. Lietal.

1.5¢ 1

051 1

population density [ w(x)/r ]

0 . . . ]
-10 -5 0 5 10

location (x)

Fig. 1 A numerical approximation to the graph of w(x)/r with r = 0.9 and ¢ = 0.30008

When r < 1, we have o < 1, so that f is increasing on the range 0 < u < «. In
this case, it is easily seen that ff=f"=ffor0<u<a=0=u*=r.Hence
w = w' = w is nonincreasing and has the limits r at —oo and 0 at +oc.

Figure 1 shows an approximation to the graph of w(x)/r withr = 0.9 and ¢ =
0.30008.

The proof of Lemma 3.10 of Thieme’s paper [6] with a slightly adapted version of
Lemma 3.10 there shows that if u, is a solution of (1.1) withug < o = "L, ifr <2
so that the equilibrium u = r is stable, and if 0 < ¢; < ¢*, then

lim max |r —u,(x)| =0.
n—00 |x|<nc|

(Note that, as is the case in our example, k (x) is assumed to be even in this Theorem, so
that the leftward and rightward spreading speeds are both equal to ¢*). The definition of
a traveling wave shows that the sequence u,, (x) = w(x —nc) satisfies (1.1). Therefore,
for any positive € there is an N, such that |r — w(x)| < € when —(c +c)n < x <
—n(c —cy) and n > N.. Because ¢; < ¢* < ¢, we have ¢ — ¢; > 0. If N, is also
chosen so large that (2N, + 1)c; > c, the above intervals for n and n + 1 overlap
when n > N, and we conclude that |r — w(x)| < € forall x < —(c — ¢1)Ne. Since
€ is arbitrary, we have shown that

lim w(x) =r whenr < 2.
X—>—00

That is, as long as r < 2, the wave w has the limit » at —oo.

Figure 2 shows an approximation to the graph of w(x)/r whenr = 1.6 and ¢ =
0.5334. We see that the graph oscillates about the value 1, and that the oscillations are
damped out for large negative x.
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Fig. 2 A numerical approximation to the graph of w(x)/r with r = 1.6 and ¢ = 0.5334

population density [ w(x)/r ]

-10 -5 0 5 10
location (x)

Fig. 3 A numerical approximation to the graph of w(x)/r with r = 2.1 and ¢ = 0.70008

When r > 2, the equilibrium solution u, = r is unstable.

Figure 3 shows an approximation to the graph of w(x)/r for r = 2.1 and ¢ =
0.70008. We note that the wave seems to continue oscillating all the way to —oo. It
appears, in fact, that the oscillations for large negative x are periodic of period 2c, but
we have not been able to prove this. As r becomes larger, the periods in the tail can
be expected to become shorter, so that the tail will eventually look chaotic.

This behavior is illustrated by Fig. 4, which shows the approximate wave of speed
1.0001 when r = 3.
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Fig. 4 A numerical approximation to the graph of w(x)/r with r = 3.0 and ¢ = 1.0001

6 Discussion

We have shown that for a class of integral recursion models with overcompensation,
the asymptotic spreading speed can be characterized as the smallest speed of a natural
class of non-constant traveling waves. When k(x) is the Laplace kernel (8/ 2)ePlxl,
Kot [4] has predicted the existence of such traveling waves by means of a heuristic
argument, and has asked other researchers to come up with a proof. Our Theorem 4.1
provides such a proof.

In the case of the logistic recruitment function f(u) = u[l + r(1 — u)] with
0 < r < 3, Kot’s simulations seem to indicate that for » < 2, including some values at
which the wave is not monotone, the solution of an initial value problem converges “in
shape” to the traveling wave of speed ¢*. However, simulations in [4], and unpublished
simulations for the Ricker function by Shigesada and Kawasaki seem to show that
when the parameter is slightly larger than the value at which the constant equilibrium
becomes unstable, the solution of the initial value problem settles down “in shape”, not
to a time-independent solution, but to a solution which is periodic of period 2 in n, and
that the period grows as stable spatially independent cycles arise with increasing r.
Such solutions cannot converge to a steady wave of the kind we have constructed.
However, Kot conjectured that the solutions which approach a k-cycle will converge
in shape to a traveling wave of speed kc* of the recursion u 41 = O [uni], with
O the kth iterate of the operator Q. We know of no way to prove this conjecture.

The present paper has only treated the recursion (1.1) for a one-dimensional habitat.
However, the traveling wave solution w (& - X — nc) of speed c in the direction of the
analogous recursion in two or more space dimensions is a solution of a recursion of the
form (1.1), where the kernel k depends on ¢ and & (See, e.g., [9]). Therefore, Theorem
4.1 of the present paper still gives the result that such a traveling wave exists if and
only if ¢ > ¢* (&), where ¢*(€) is the spreading speed defined in [9] for the operator
with the nonmonotone function f replaced by f+.
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In [5,6] Thieme considered an integral equation model for the population density
u(t, x) of mature individuals near x at time ¢, which can be written in the form

t—ty o0
u(t,x) =ap(t, x) + / / k(s,y)f(u(t —s,x — y))dyds. 6.1)
0 —oo

Here 1j is an initial time, ag(¢, x) is the (predictable) density of mature individuals
which were born before the initial time, f is a fecundity function, and k (s, y) represents
the density of individuals which have survived and moved by a distance y during a
time s after birth. In [3] Diekmann considered an epidemic model which also has the
form (6.1), and showed that one can define a traveling wave of this equation in the
following manner: take a limit as the initial time ¢y recedes to —oo, and ag becomes
0, and look for a solution of the form u(z, x) = w(x — ct) of the resulting equation.
If we define the variables X = x — ¢t and Y = y — cs, the equation for w takes the
form

o0

w(X) = / ke(Y) f(w(X —=Y))dY, (6.2)

—00

where we have defined the one-dimensional kernel

oo

keo(Y) ::/k(s, Y + cs)ds.
0

We note that the equation for w says that w is an equilibrium, that is, a traveling wave
of speed 0, of the recursion (1.1) with the migration kernel k.. As long as f(u) is
nondecreasing, as it is in [3], this wave exists if and only if the spreading speed of
this recursion is nonpositive. The formula (3.1) and the definition of k. show that this
condition is equivalent to the inequality

o 0
/ / = k(s, y)dsdy <1 forall p > 0.
—00 0

Diekmann and Thieme independently found that the spreading speed of the Eq. (6.1)
is the infimum of the numbers ¢ such that this inequality is valid. Diekmann then
concluded that for his equation, for which f is nondecreasing, there are traveling waves
for all ¢ which are at least equal to this spreading speed. The same conclusion holds
for the more general but nondecreasing functions f treated in [5]. For the functions
with overcompensation treated in [6], on can obtain the same conclusion by using
Theorem 4.1, provided the kernel k. and the fecundity f satisfy the Hypotheses 2.1.

It may well be true that the same idea can be applied to the more general model of
Thieme and Zhao in [7], in which the product function k(s, y) f (u(t — s, x — y)) in
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(6.1) is replaced by a function F(u(t — s, x — y), s, y), with the function F (v, s, y)
subject to suitable hypotheses. The existence of a spreading speed is established under
hypotheses similar to those of [6], but the existence of a traveling wave is only proved
under the additional assumption that F'(v, s, y) is nondecreasing in v. The traveling
wave satisfies the Eq. (6.2) with the product m.. f replaced by a function F,(v, Y). The
proof of Theorem 4.1 should establish the existence of waves under weaker hypotheses
on F.
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